• Skip to primary navigation
  • Skip to main content
  • Skip to footer

SAGES

Reimagining surgical care for a healthier world

  • Home
    • Search
    • SAGES Home
    • SAGES Foundation Home
  • About
    • Who is SAGES?
    • SAGES Mission Statement
    • Advocacy
    • Strategic Plan, 2020-2023
    • Committees
      • Request to Join a SAGES Committee
      • SAGES Board of Governors
      • Officers and Representatives of the Society
      • Committee Chairs and Co-Chairs
      • Full Committee Rosters
      • SAGES Past Presidents
    • Donate to the SAGES Foundation
    • SAGES Store
    • Awards
      • George Berci Award
      • Pioneer in Surgical Endoscopy
      • Excellence In Clinical Care
      • International Ambassador
      • IRCAD Visiting Fellowship
      • Social Justice and Health Equity
      • Excellence in Community Surgery
      • Distinguished Service
      • Early Career Researcher
      • Researcher in Training
      • Jeff Ponsky Master Educator
      • Excellence in Medical Leadership
      • Barbara Berci Memorial Award
      • Brandeis Scholarship
      • Advocacy Summit
      • RAFT Annual Meeting Abstract Contest and Awards
    • “Unofficial” Logo Products
  • Meetings
    • NBT Innovation Weekend
    • SAGES Annual Meeting
      • 2024 Scientific Session Call For Abstracts
      • 2024 Emerging Technology Call For Abstracts
    • CME Claim Form
    • Industry
      • Advertising Opportunities
      • Exhibit Opportunities
      • Sponsorship Opportunities
    • Future Meetings
    • Related Meetings Calendar
  • Join SAGES!
    • Membership Benefits
    • Membership Applications
      • Active Membership
      • Affiliate Membership
      • Associate Active Membership
      • Candidate Membership
      • International Membership
      • Medical Student Membership
    • Member News
      • Member Spotlight
      • Give the Gift of SAGES Membership
  • Patients
    • Healthy Sooner – Patient Information for Minimally Invasive Surgery
    • Patient Information Brochures
    • Choosing Wisely – An Initiative of the ABIM Foundation
    • All in the Recovery: Colorectal Cancer Alliance
    • Find a SAGES Member
  • Publications
    • SAGES Stories Podcast
    • SAGES Clinical / Practice / Training Guidelines, Statements, and Standards of Practice
    • Patient Information Brochures
    • TAVAC – Technology and Value Assessments
    • Surgical Endoscopy and Other Journal Information
    • SAGES Manuals
    • SCOPE – The SAGES Newsletter
    • COVID-19 Annoucements
    • Troubleshooting Guides
  • Education
    • OpiVoid.org
    • SAGES.TV Video Library
    • Safe Cholecystectomy Program
      • Safe Cholecystectomy Didactic Modules
    • Masters Program
      • SAGES Facebook Program Collaboratives
      • Acute Care Surgery
      • Bariatric
      • Biliary
      • Colorectal
      • Flexible Endoscopy (upper or lower)
      • Foregut
      • Hernia
      • Robotics
    • Educational Opportunities
    • HPB/Solid Organ Program
    • Courses for Residents
      • Advanced Courses
      • Basic Courses
    • Fellows Career Development Course
    • Robotics Fellows Course
    • MIS Fellows Course
    • Facebook Livestreams
    • Free Webinars For Residents
    • SMART Enhanced Recovery Program
    • SAGES OR SAFETY Video
    • SAGES at Cine-Med
      • SAGES Top 21 MIS Procedures
      • SAGES Pearls
      • SAGES Flexible Endoscopy 101
      • SAGES Tips & Tricks of the Top 21
  • Opportunities
    • NEW-Area of Concentrated Training Seal (ACT)-Advanced Flexible Endoscopy
    • SAGES Fellowship Certification for Advanced GI MIS and Comprehensive Flexible Endoscopy
    • Multi-Society Foregut Fellowship Certification
    • SAGES Research Opportunities
    • Fundamentals of Laparoscopic Surgery
    • Fundamentals of Endoscopic Surgery
    • Fundamental Use of Surgical Energy
    • Job Board
    • SAGES Go Global: Global Affairs and Humanitarian Efforts
  • Search
    • Search All SAGES Content
    • Search SAGES Guidelines
    • Search the Video Library
    • Search the Image Library
    • Search the Abstracts Archive
  • OWLS
  • Log In

Surgical approach to microwave and radiofrequency liver ablation or hepatocellular carcinoma and colorectal liver metastases less than 5 cm: a systematic review and meta-analysis

Print Friendly, PDF & Email
Find a SAGES Surgeon

AUTHORS

Moustafa Abdalla1, Amelia T. Collings2, Rebecca Dirks2, Edwin Onkendi3, Daniel Nelson4, Ahmad Ozair7, Emily Miraflor5, Faique Rahman6, Jake Whiteside2, Mihir M Shah8, Subhashini Ayloo9, Ahmed Abou-Setta10, Iswanto Sucandy11, Ali Kchaou12, Samuel Douglas13, Patricio Polanco14, Timothy Vreeland15, Joseph Buell16, Mohammed T. Ansari17, Aurora D. Pryor18, Bethany J. Slater19, Ziad Awad20, William Richardson21, Adnan Alseidi22, D. Rohan Jeyarajah23, Eugene Ceppa2

  1. Department of Surgery, Harvard Medical School, Boston, MA, USA
  2. Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
  3. Department of Surgery, Texas Tech University Health Sciences, TX, USA
  4. Department of Surgery, William Beaumont Army Medical Center, Fort Bliss, TX, USA
  5. Department of Surgery, University of California, San Francisco – East Bay, CA, USA
  6. Jawaharlal Nehru Medical College and Hospital, Aligarh Muslim University, Aligarh, India
  7. King George’s Medical University, Chowk, Lucknow, India
  8. Division of Surgical Oncology, Department of Surgery, Emory University School of Medicine, Winship Cancer Institute, Atlanta, GA, USA
  9. Department of Surgery, Alpert Medical School of Brown University, Providence, RI, USA
  10. Knowledge Synthesis, University of Manitoba, Winnipeg, Canada
  11. Department of Surgery, University of Central Florida, Tampa, FL, USA
  12. Department of Surgery, University of Sfax, Sfax, Tunisia
  13. Sentara Medical Group, Norfolk, VA. USA
  14. University of Texas Southwestern Medical Center, Dallas, TX, USA
  15. Department of Surgery, Brooke Army Medical Center, Houston, TX, USA
  16. Department of Surgery and Pediatrics, Tulane University, New Orleans, LA USA
  17. School of Epidemiology and Public Health, University of Ottawa, Ontario, Canada
  18. Department of Surgery, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
  19. Department of Surgery, University of Chicago, IL, USA
  20. Department of Surgery, University of Florida College of Medicine-Jacksonville, Jacksonville, FL, USA
  21. Department of Surgery, Ochsner Clinic, New Orleans, LA, USA
  22. Department of Surgery, University of California San Francisco, CA, USA
  23. Department of Surgery, TCU and UNTHSC School of Medicine, Fort Worth, TX, USA

Address all correspondences to::

Eugene P. Ceppa, MD
Indiana University School of Medicine

ABSTRACT

Background: Primary hepatocellular carcinoma (HCC) and colorectal liver metastases (CRLM) represent the two most common malignant neoplasms of the liver. The objective of this study was to assess outcomes of surgical approaches to liver ablation comparing laparoscopic versus percutaneous microwave ablation (MWA), and MWA versus radiofrequency ablation (RFA) in patients with HCC or CRLM lesions smaller than 5 cm.

Methods: A systematic review was conducted across six databases, including PubMed, Embase and Cochrane, to identify all comparative studies between 1937-2021. Two independent reviewers screened for eligibility, extracted data for selected studies, and assessed study bias using the modified Newcastle Ottawa Scale. Random effects meta-analyses were subsequently performed on all available comparative data.

Results: From 1066 records screened, 11 studies were deemed relevant to the study and warranted inclusion. Eight of the 11 studies were at high or uncertain risk for bias. Our meta-analyses of two studies revealed that laparoscopic MW ablation had significantly higher complication rates compared to a percutaneous approach (risk ratio = 4.66; 95% confidence interval = [1.23, 17.22]), but otherwise similar incomplete ablation rates, local recurrence, and oncologic outcomes. The remaining nine studies demonstrated similar efficacy of MWA and RFA, as measured by incomplete ablation, complication rates, local/regional recurrence, and oncologic outcomes, for both HCC or CRLM lesions less than 5 cm (p > 0.05 for all outcomes). There was no statistical subgroup interaction in the analysis of tumors <3 cm.

Conclusions: The available comparative evidence regarding both laparoscopic versus percutaneous MWA and MWA versus RFA is limited, evident by the few studies that suffer from high/uncertain risk of bias. Additional high-quality randomized trials or statistically matched cohort studies with sufficient granularity of patient variables, institutional experience, and physician specialty/training will be useful in informing clinical decision making for the ablative treatment of HCC or CRLM.

Key Words: microwave ablation; percutaneous; laparoscopic; radiofrequency ablation; hepatocellular carcinoma; colorectal liver metastases

INTRODUCTION

Hepatectomy remains the gold standard treatment for the two most common malignant neoplasms of the liver, primary hepatocellular carcinoma (HCC) and colorectal liver metastases (CRLM) [1-3]. Unfortunately, when considering both contraindications to surgical treatment (e.g., insufficient future liver remnant, tumor size, number, anatomic distribution) and comorbid conditions that increase surgical morbidity, less than 5-20% of patients are suitable candidates for resection [2-6]. Furthermore, the improvement in long-term prognosis has been modest: the 5-year survival rate is estimated at 20-40% [2, 3]. This is especially concerning given the increasing incidence of primary HCC since the 1990s [7] and the fact that 25-50% of patients with colorectal cancer will develop CRLM [8-10].

The development of (minimally invasive) techniques for tumor ablation by direct application of chemicals or energy have addressed some of these shortcomings, especially for lesions that are less than 5 cm [2, 11-14]. With the reduced morbidity and mortality compared to resection, these techniques have expanded the pool of eligible patients, can be used to treat small tumor sizes/multiple tumors, and if clinically indicated, may be repeated to treat recurring tumors [13]. Thermal modalities, including radiofrequency (RFA) and microwave (MWA) ablation, represent the most widely-used ablative techniques. RFA treatment is the most common [12] and an accepted approach in selected patients (e.g., HCC lesions smaller than 3 cm) [12, 13, 15]. In contrast, MWA, a more recent addition initially developed for lung cancers [13], has some theoretical benefits over RFA (including less peri-procedural pain, and more predictable ablation) [11-14].

Although both RFA and MWA result in coagulative necrosis via direct application of heat, the physical principles employed are distinct [4, 11-13]. RFA creates a zone of coagulation necrosis through both resistive heating derived from an alternating current driven from the applicator probe (cathode), as well as an accompanying thermal diffusion into adjacent tissues [4, 11]. Comparatively, MWA uses dielectric (electromagnetic) hysteresis which can penetrate tissue that are generally recognized as poor electrical conduits and is generally less reliant on conduction down the thermal gradient (i.e., less indirect application of heat) [11]. MWA can generate more power to produce larger and higher ablation temperatures, but at an increased risk of other complications not as commonly associated with RFA (e.g., thrombosis of the portal vein in cirrhotic patients). Despite our understanding of these physical principles and several systematic reviews on these ablative techniques [2-4, 16], it is unclear how the two modalities and technical variations thereof (laparoscopic, percutaneous, open) compare with respect to procedural-specific morbidity, local/regional recurrence, and survival.

To explore the comparative effectiveness of microwave and radiofrequency ablation, as well as to assess the benefit of percutaneous versus laparoscopic microwave ablation, we conducted a systematic review and meta-analysis to inform our combined Society of American Gastrointestinal and Endoscopic Surgeons (SAGES) and Americas Hepato-Pancreato-Biliary Association (AHPBA) guidelines and ultimately help clinicians in selecting ablative treatment modalities for individuals afflicted with primary or secondary liver neoplasms. Importantly, this systematic review does not compare resection versus ablation and thus should not be interpreted as an endorsement for the use of ablation in respectable lesions (especially for CRCLM and HCC lesions greater than 2 cm). The intent of this systematic review is to document the data available to date of this technology as it is being used more in clinical practice for these tumors.

METHODS AND MATERIALS

To compare the two aforementioned modalities, the SAGES guidelines committee and representatives from AHPBA formed a working group to perform a systematic review and meta-analysis reported here according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines [17]. Further, due to the few reasonable studies available, the working subgroup decided that procedure specific and short-term outcomes were the primary goal and thus, HCC and CRCLM are grouped together. (The limitation of this combination is discussed in the Limitations section further below.) The subgroup had originally drafted six questions according to the PICO format (Population, Intervention, Comparator, and Outcomes) to guide the literature search (see Appendix 1 – Note 1). However, on completion of the literature search, the working group realized that only sufficient evidence existed to answer two modified questions as follows:

Key Question 1 (KQ1): Should Percutaneous vs. Laparoscopic MW ablation be used for HCC and/or CRLM less than 5 cm?

Outcomes: Incomplete Ablation, Local/Regional Recurrence, Complications, Disease Free Survival (DFS), Overall Survival (OS)

Key Question 2 (KQ2): Should MW ablation (laparoscopic or open) vs. RF ablation (laparoscopic or open) be used for HCC or CRLM less than 5 cm?

Subgroup analysis: HCC or CRLM less than 3 cm
Outcomes: Incomplete Ablation, Local/Regional Recurrence, Complications, DFS, OS

Types of interventions

As described above, all studies comparing percutaneous versus laparoscopic MWA of HCC or CRLM were included, as were any comparative studies of surgical approaches to MWA and RFA (including laparoscopic or open) for the same tumors. Studies that included combined chemoembolization and ablation were also included but tagged for possible source of heterogeneity. Any studies that combined resection with ablation were excluded from our meta-analysis.

Types of Outcomes

Five classes of outcomes of interest were specified a priori: (i) incomplete ablation, defined as the number of tumors incompletely ablated out of the total number of tumors (not individual patients); (ii) perioperative complications of Clavien-Dindo grade ≥3; (iii) local/regional recurrence, defined as radiologic and/or histologic identification of recurrent tumor at original site or draining lymph nodes after completed ablation; (iv) disease-free survival; and (v) overall survival.

Literature Search & Eligibility Criteria

A clinically guided search was performed for each of the six key questions (Appendix 1 – Note 1) in December 2019, with the assistance of a medical librarian, across six databases: the Cochrane library, Clinicaltrials.gov, the Cumulative Index to Nursing and Allied Health Literature (CINAHL), Embase, PubMed, and the WHO’s International Clinical Trials Registry Platform (ICTRP). The full search criteria and the number of records contributed from each database is provided in Appendix 1 – Note 2, including all publications between 1937-2021. All records were combined with EndNote (Clarivate Analytics) then uploaded to Covidence for screening, with duplicates automatically removed in both EndNote and Covidence prior to screening. Exclusion criteria included: reviews that are not systematic reviews and/or meta-analyses, non-English abstracts, non-comparative studies (e.g. case series), and total sample sizes of less than 10 patients across all arms (e.g., case reports or limited case series). An updated search was performed in June 2021 to capture more recent studies or studies not included in the original search.

Study selection

All reviewers participating in the systematic review had received prior training in systematic review methodology. To calibrate reviewers’ ratings for study selection and screening, 100 randomly selected abstracts were reviewed by all reviewers on Abstrackr (Brown University, Providence, Rhode Island). All disagreements were discussed during a conference call. Subsequently, all titles and abstracts were screened by two independent reviewers for relevance and eligibility using Covidence. All irrelevant publications were excluded, as were any remaining duplicates or non-English language studies that bypassed our search filters. Full text review by two independent reviewers was subsequently performed. Exclusion criteria included non-comparative studies, case reports, letters to the editors, abstracts, author replies, and lay press articles Only peer-reviewed English language manuscripts meeting screening criteria were included in our final data extraction. It is also important to note that, while reviews were excluded from the pooled analyses, the reference lists were hand-searched for additional relevant references. Discrepancies were resolved through discussion among the reviewers, with a final decision made by the senior author (E.C.) when necessary.

Risk of bias in individual studies

The modified Newcastle-Ottawa Scale was used to assess risk of bias for observational studies (Appendix 1 – Note 3) [18]. Each study was scored by two independent reviewers. Criteria were assessed for risk of bias across three broad categories: selection, comparability, and outcomes. Our minimum length of follow up to be considered ‘low risk of bias’ from outcomes was a priori defined as 1 year, with length of follow up 3 years or greater as ideal. No randomized control trials were selected for full data extraction, and thus, the Cochrane Risk of Bias Tool was not employed in this systematic review.

Data extraction

Two reviewers independently completed the data extraction forms on Covidence to extract study characteristics, sponsorship source, methods, population (including baseline characteristics), interventions, and a priori determined outcomes. Our primary outcomes, as described above in detail, were incomplete ablation, local/regional recurrence, complication rates, disease-free survival, and overall survival.

Data Synthesis

Study data were synthesized quantitatively. We used RevMan (version 5.4 Nordic Cochrane Centre, Copenhagen, Denmark) for meta-analyses. As all relevant data were dichotomous, we estimated risk ratios (RR) with a Mantel-Haenszel (MH) random effects model. Heterogeneity between studies was assessed using I2 and χ2 measures. A p < 0.05 was considered significant for χ2 values; a I2 < 40% was considered low. We meta-analyzed data when heterogeneity across studies was low or remained unexplained.

RESULTS

Across the bibliographic databases and the 33 records identified through hand searching of systematic review reference lists, total 1066 unique records were screened for eligibility with 11 records deemed relevant to the two review questions (PRIMSA flow diagram Figure 1). Each record represented a unique study. All 11 studies were of observational design (see Table 1 and Table 2).

PRISMA flow diagram for the systematic review
Figure 1. PRISMA flow diagram for the systematic review. The breakdown by question is summarized in Tables 1 and 2.

Key Question 1 (KQ1): Should Percutaneous vs. Laparoscopic MW ablation be used for HCC and/or CRLM less than 5 cm?

A total of two observational studies, with 81 and 91 patients who underwent liver-directed microwave thermal ablations, met inclusion criteria for KQ1 [19, 20]. Unfortunately, both studies were deemed to have a high risk of bias for all outcomes, driven primarily by poor comparability between intervention groups and inadequately defined follow-up periods (Table 3).

Table 1. Baseline characteristics of the two studies included to answer KQ1 (percutaneous versus laparoscopic MW ablation)
Table 1. Baseline characteristics of the two studies included to answer KQ1 (percutaneous versus laparoscopic MW ablation)

Table 3. Risk of bias for the observational studies included under KQ1 as assessed by a modified Newcastle Ottawa Scale.

Incomplete Ablation

Both studies were included in the meta-analysis for incomplete ablation. Data from 54 laparoscopic and 97 percutaneous MW ablations demonstrated a lower risk of incomplete ablation after the laparoscopic approach, although this was not statistically significant (RR 0.28, 95% CI 0.05-1.55, I2=0%, Figure 2).

Forest plot for incomplete ablation with percutaneous MWA
Figure 2. Forest plot for incomplete ablation with percutaneous MWA as the reference class

Complications

While neither study was independently significant, meta-analysis revealed an increased MH risk ratio for complications in laparoscopic, versus percutaneous, microwave ablation (risk ratio [RR] = 4.66; 95% confidence interval [CI] = [1.23, 17.22]; Figure 3).

Forest plot for complication rates of laparoscopic versus percutaneous MW ablation
Figure 3. Forest plot for complication rates of laparoscopic versus percutaneous MW ablation

Local/regional recurrence; 1-year disease-free survival; 1-year overall survival

Only one of the two studies merited inclusion in meta-analyses for the three aforementioned outcomes (DellaCorte 2020). Local/regional recurrence was not non-significant in comparisons of laparoscopic versus percutaneous MWA (RR 0.43, 95% CI 0.10–1.75). Our limitation to outcomes at 1 year was dictated exclusively by the availability of data (i.e., no outcome data beyond 1 year) and were also not significant, with a risk ratio of 1.14 (0.19–1.38) and 1.00 (0.93–1.07), for disease-free and overall survival, respectively.

Key Question 2 (KQ2): Should MW ablation (laparoscopic or open) vs. RF ablation (laparoscopic or open) be used for HCC or CRLM less than 5 cm?

Nine comparative studies met inclusion criteria for KQ2 [21-29]. Six of the nine total studies were deemed to have high or uncertain risk of bias (Table 4). The study cohorts ranged from 35 to 391 patients (Table 2).

Table 2. Baseline characteristics of the 9 studies included to answer KQ2 (Surgical MWA vs. Surgical RFA). No sponsors or funding sources were reported for any of the studies
Table 2. Baseline characteristics of the 9 studies included to answer KQ2 (Surgical MWA vs. Surgical RFA).

Table 4. Risk of bias for the observational studies included under KQ2 (MWA vs RFA for lesions smaller than 5 cm), as assessed by a modified version of the Newcastle Ottawa Scale.
Risk of bias for the observational studies included under KQ2

Incomplete Ablation

Six of nine studies, with data from 348 MWA and 367 RFA, were included in the combined less than 5 cm meta-analysis and revealed no difference between MWA and RFA (RR 1.0, 95% CI 0.05-1.55, I2=0%, Figure 4). While the subgroup analysis for tumor less than 3 cm favored MWA, it included one study and was not significant (RR 0.19, 95% CI 0.01-3.88, Figure 4).

Forest plot for incomplete ablation with RFA as the reference class.
Figure 4. Forest plot for incomplete ablation with RFA as the reference class.

Complications

Similarly, eight of nine studies, with data from 402 MWA and 480 RFA, were included in the combined less than 5 cm meta-analysis and revealed no difference between MWA and RFA (RR 1.0, 95% CI 0.05-1.55, I2=0%, Figure 6). This was consistent for all subgroup analyses, including tumors less than 3 cm (RR 0.78, 95% CI 0.72-1.33, I2 =0%, Figure 5).

Forest plot for complication rates with RFA as the reference class.
Figure 5. Forest plot for complication rates with RFA as the reference class

Local/regional recurrence; disease-free survival; overall survival

All comparative meta-analyses between MWA and RFA were non-significant for the three aforementioned outcomes explored in both the cumulative (< 5 cm) and sub-group (< 3 cm) analyses (Figures 7-9). That is, there were no significant differences between patients who underwent MWA versus RFA with regards to local/regional recurrence (combined MH RR = 0.97, 95% CI 0.73-1.30, I2=0%;  Figure 6). There were also no significant differences for disease-free survival at 1 year (combined MH RR = 0.99, 95% CI = 0.83-1.19, I2=15%), 3 years (RR = 1.03, 95% CI = 0.73-1.45, I2=0%), and 5 years (RR = 1.09, 95% CI = 0.79-1.51, I2=0%; Figure 7). Similarly, we observed no significant differences in the metanalyses for overall survival at 1 year (RR = 0.99, 95% CI = 0.97-1.01, I2=7%), 3 years (RR = 0.99, 95% CI = 0.94-1.05, I2=0%), and 5 years (RR = 1.01, 95% CI = 0.91-1.11, I2=0%; Figure 8).

Forest plot for local/regional recurrence with RFA as the reference class.
Figure 6. Forest plot for local/regional recurrence with RFA as the reference class.

Forest plot for DFS with RFA as the reference class at: (a) 1 year.
Figure 7a. Forest plot for DFS with RFA as the reference class at 1 year.
Forest plot for DFS with RFA as the reference class at 3 years.
Figure 7b. Forest plot for DFS with RFA as the reference class at 3 years.
Forest plot for DFS with RFA as the reference class at 5 years.
Figure 7c. Forest plot for DFS with RFA as the reference class at 5 years.

Figure 9a. Forest plot for OS with RFA as the reference class at: (a) 1 year.
Figure 8a. Forest plot for OS with RFA as the reference class a 1 year.
Figure 9b. Forest plot for OS with RFA as the reference class at 3 years.
Figure 8b. Forest plot for OS with RFA as the reference class at 3 years.
Figure 9c. Forest plot for OS with RFA as the reference class at 5 years.
Figure 8c. Forest plot for OS with RFA as the reference class at 5 years.

DISCUSSION

The purpose of this systematic review was to review the literature and pool appropriate comparative data to better inform clinical decision making regarding both the ablative modality and technical approach for the treatment of the two most common malignant liver neoplasms. Critically, this systematic review is not a comparison of resection versus ablation.

Despite a comprehensive literature search, we identified less than a dozen relevant studies with the majority at high or uncertain risk of bias. Within these constraints, we noted that the efficacy of MWA, as measured by incomplete ablation, complication rates, local/regional recurrence, and survival, appears similar to that of RFA both for HCC and CRLM lesions less than 5 cm. This was consistent in the subgroup analysis of lesions less than 3 cm. With regards to approach, laparoscopic MWA had significantly higher complication rates, but otherwise similar risk of incomplete ablation, local/regional recurrence, and survival.

These results are not an endorsement of the of ablation in respectable lesions, especially for CRCLM and
HCC > 2 cm. Ablative technology is just one component of the treatment algorithms, which include surgery, chemotherapy, radiation therapy, as well as liver-directed therapies (none of which are explored or investigated in this systematic review).

Relationship to literature

There have been several comparative studies [30-32] and systematic reviews [33-35] that have attempted to address outcomes (including local disease control and survival) of percutaneous MWA versus RFA for HCC and CRLM. While most of these studies hint at similar completion frequencies, complication rates, and survival between MWA and RFA, they disagree with regards to local tumor control and progression [33, 34]. This controversy, in part, stems from substantial variation in the clinical contexts in which these ablation technologies were deployed (e.g., tumor size, number, anatomic distribution, as well as patient profiles/comorbidities), making it difficult to compare or to perform a meta-analysis of the results. Further, none of these studies have explored other surgical approaches (e.g., laparoscopic, or open).  Our analyses here suggest that laparoscopic or open MWA and RFA are similarly safe and effective for lesions smaller than 5 cm. However, given the limited evidence and quality, these results are not definitive.

In contrast, very few studies have compared percutaneous and laparoscopic MWA of malignant liver neoplasms [19, 20]. Thus, while this limits the power of our meta-analysis, our systematic review provides a comprehensive look at the existing literature. Our results suggest that percutaneous MWA is safer than laparoscopic MWA, with regards to complication rates, but no difference in ablative completeness rates or survival. Although given the major differences in patients included in each cohort (including more multifocal disease patients in the laparoscopic group, as well as overall sicker patients with higher incidence of chronic hepatitis C), it is unclear how confounded these observations are.

Limitations

All 11 comparative studies included in our analyses were observational (all but one being retrospective cohort studies), with relatively small sample sizes and short follow-up. Furthermore, the majority (two out of two of the percutaneous versus laparoscopic MWA studies, and five of nine of the MWA vs RFA studies) were deemed at either uncertain or high risk of bias. No randomized clinical trials met our inclusion criteria. Altogether, the paucity of high-quality evidence limits the definitive with which we can present these conclusions. Restrictions in our literature search (e.g., to English language only studies) are likely to have had minimal impact, given both the national/geographic diversity of the included studies (China, Egypt, Italy, Japan, and USA) and that only two full text articles were excluded (Figure 1).

It is also important to note that HCC and CRCLM are distinct diseases when looking at treatment algorithms and overall survival. The goal of this systematic review was to assess what data are available on differences between MWA and RFA rather than to make any argument that ablation is superior to resection or any other therapy. In fact, we think it is inappropriate to make any such claim with the current available evidence. A surgeon or multi-disciplinary group should always make the decision when ablation is appropriate. Due to the lack in number of reasonable studies to include in such a review of what is currently an important question considering the rapid adoption of MWA of the last several years with very little data, the working group decided that procedure specific and short-term outcomes were the primary goal. Thus, we included HCC and CRCLM as one analysis.

Relevance to clinical practice

Our findings suggest MWA and RFA for HCC or CRLM lesions less than 5 cm are comparable with respect to efficacy and safety. Further, our results also support that percutaneous MWA should be preferred to laparoscopic approaches due to lower complication rates. However, as discussed above, given the limited evidence and quality of data, these results do not definitively eliminate the clinical equipoise surrounding our PICO questions.

Future research recommendations

Given the paucity of comparative observational studies and the complete absence of randomized control trials, there is a pressing need for higher-quality evidence to inform both selection of the ablative technology and technical approach. This evidence must have adequately sufficient follow-up and must clearly define the clinical contexts/indications (if any) in which one approach or technique may be preferred over another (e.g., tumor size or anatomic distribution). We encourage researchers to ensure sufficient granularity in the data (e.g., molecular biology, location, experience of institution, and physician specialty [e.g., interventional radiology vs surgery]) to help discriminate between institutional and intervention effects, as well as identify appropriate patients for each intervention.

CONCLUSION

Available evidence indicates that there was no difference between MWA and RFA treatment with a surgical (laparoscopic or open) approach for HCC or CRLM lesions less than 5 cm, with respect to safety or efficacy. Further, percutaneous MWA is preferable to laparoscopic approaches due to lower complication rates but is otherwise comparable with respect to completeness rates and survival.

Placing this systematic review in the broader clinical context, it is critical to note that ablative technology is only one treatment modality – an increasingly used part of treatment algorithms, which also include liver-directed therapies, surgery, chemotherapy, and radiation. However, this systematic review does not compare, nor endorse ablation in preference to any of these modalities. Ultimately clinicians and multi-disciplinary groups should offer recommendations based on the clinical criteria for each individual patient.

Our systematic review also revealed a definitive need for high quality comparative/population-based studies to better guide clinical decision making. While the evidence is limited and of variable quality, the results described here will form the basis of an upcoming integrated SAGES-AHPBA clinical practice guideline.

Ethics declarations

Disclosure: Aurora Pryor is a speaker for Ethicon, Gore, Medtronic, Merck, and Stryker. She has received research support from Obalon. Bethany Slater is a consultant for Bolder Surgical. Moustafa Abdalla, Amelia T. Collings, Rebecca Dirks, Edwin Onkendi, Daniel Nelson, Ahmad Ozair, Emily Miraflor, Faique Rahman, Jake Whiteside, Mihir M Shah, Subhashini Ayloo, Ahmed Abou-Setta, Iswanto Sucandy, Ali Kchaou, Samuel Douglas, Patricio Polanco, Timothy Vreeland, Joseph Buell, Mohammed T. Ansari, Ziad Awad, William Richardson, Adnan Alseidi, D. Rohan Jeyarajah, and Eugene Ceppa have no conflicts of interest or financial ties to disclose.

APPENDIX

Liver Ablation Systematic Review Appendix 1

REFERENCES

  1. Abdalla EK, Vauthey J-N, Ellis LM, Ellis V, Pollock R, Broglio KR, Hess K, Curley SA (2004) Recurrence and outcomes following hepatic resection, radiofrequency ablation, and combined resection/ablation for colorectal liver metastases. Ann Surg 239:818-825; discussion 825-827
  2. Bhardwaj N, Strickland A, Ahmad F, Dennison A, Lloyd D (2010) Liver ablation techniques: a review. Surg Endosc 24:254-265
  3. McGhana JP, Dodd III GD (2001) Radiofrequency ablation of the liver: current status. AJR Am J Roentgenol. 176:3-16
  4. Decadt B, Siriwardena AK (2004) Radiofrequency ablation of liver tumours: systematic review. Lancet Oncol 5:550-560
  5. European Association For The Study Of The Liver, European Organisation For Research And Treatment Of Cancer (2012) EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol. 56:908-943
  6. Benson AB 3rd, Abrams TA, Ben-Josef E, Bloomston PM, Botha JF, Clary BM, Covey A, Curley SA, D’Angelica MI, Davila R Ensminger WD, Gibbs JF, Laheru D, Malafa MP, Marrero J, Meranze SG, Mulvihill SJ, Park JO, Posey JA, Sachdev J, Salem R, Sigurdson ER, Sofocleous C, Vauthey JN, Venook AP, Goff LW, Yen Y, Zhu AX (2009) NCCN clinical practice guidelines in oncology: hepatobiliary cancers. J Natl Compr Canc Netw 7:350-391
  7. Rich NE, Yopp AC, Singal AG, Murphy CC (2020) Hepatocellular carcinoma incidence is decreasing among younger adults in the United States. Clin Gastroenterol Hepatol 18:242-248e5
  8. Siegel RL, Fedewa SA, Anderson WF, Miller KD, Ma J, Rosenberg PS, Jemal A (2017) Colorectal cancer incidence patterns in the United States, 1974–2013. J Natl Cancer Inst 109: djw322
  9. International Agency for Research on Cancer (2012) GLOBOCAN 2012: estimated cancer incidence, mortality and prevalence worldwide in 2012. [Database] https://gco.iarc.fr/
  10. Martin J, Petrillo A, Smyth EC, Shaida N, Khwaja S, Cheow H, Duckworth A, Heis Mahvi blative Therapies for Hepatic Neoplasmster P, Praseedom R, Jah A (2020) Colorectal liver metastases: Current management and future perspectives. World J Clin Oncol 11:761-808
  11. Wells SA, Hinshaw JL, Lubner MG, Ziemlewicz TJ, Brace CL, Lee FT (2015) Liver ablation: best practice. Radiol Clin North Am 53:933-971
  12. Izzo F, Granata V, Grassi R, Fusco R, Palaia R, Delrio P, Carrafiello G, Azoulay D, Petrillo A, Curley SA (2019) Radiofrequency ablation and microwave ablation in liver tumors: an update. Oncologist 24:e990-e1005
  13. Mahvi DA, Mahvi DM (2019) Ablative Therapies for Hepatic Neoplasms. In: Yeo (ed) Shackelford’s Surgery of the Alimentary Tract, 2 Volume Set, 8th ed, Chapter 126, Elsevier; 1481-1487
  14. Poulou LS, Botsa E, Thanou I, Ziakas PD, Thanos L (2015) Percutaneous microwave ablation vs radiofrequency ablation in the treatment of hepatocellular carcinoma. World J Hepatol 7:1054-1063
  15. Violi NV, Duran R, Guiu B, Cercueil J-P, Aubé C, Digklia A, Pache I, Deltenre P, Knebel J-F, Denys A (2018) Efficacy of microwave ablation versus radiofrequency ablation for the treatment of hepatocellular carcinoma in patients with chronic liver disease: a randomised controlled phase 2 trial. Lancet Gastroenterol Hepatol 3:317-325
  16. Sutherland LM, Williams JA, Padbury RT, Gotley DC, Stokes B, Maddern GJ (2006) Radiofrequency ablation of liver tumors: a systematic review. Arch Surg 141:181-190
  17. Page MJ, Moher D, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, McKenzie JE (2021) PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ 372:n160
  18. Peterson J, Welch V, Losos M, Tugwell P (2011) The Newcastle-Ottawa scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Ottawa: Ottawa Hospital Research Institute 2:1-12
  19. Della Corte A, Ratti F, Monfardini L, Marra P, Gusmini S, Salvioni M, Venturini M, Cipriani F, Aldrighetti L, De Cobelli F (2020) Comparison between percutaneous and laparoscopic microwave ablation of hepatocellular carcinoma. Int J Hyperthermia 37:542-548
  20. De Cobelli F, Marra P, Ratti F, Ambrosi A, Colombo M, Damascelli A, Sallemi C, Gusmini S, Salvioni M, Diana P , Cipriani F, Venturini M, Aldrighetti L, Del Maschio A (2017) Microwave ablation of liver malignancies: comparison of effects and early outcomes of percutaneous and intraoperative approaches with different liver conditions. Med Oncol 34:49
  21. An C, Li W-Z, Huang Z-M, Yu X-L, Han Y-Z, Liu F-Y, Wu S-S, Yu J, Liang P, Huang J (2021) Small single perivascular hepatocellular carcinoma: comparisons of radiofrequency ablation and microwave ablation by using propensity score analysis. Eur Radiol 31:4764-4773
  22. Correa-Gallego C, Fong Y, Gonen M, D’Angelica MI, Allen PJ, DeMatteo RP, Jarnagin WR, Kingham TP (2014) A retrospective comparison of microwave ablation vs. radiofrequency ablation for colorectal cancer hepatic metastases. Ann Surg Oncol 21:4278-4283
  23. Lee K-f, Wong J, Hui JW-y, Cheung Y-s, Chong CC-n, Fong AK-w, Yu SC-h, Bo-san Lai P (2017) Long-term outcomes of microwave versus radiofrequency ablation for hepatocellular carcinoma by surgical approach: a retrospective comparative study. Asian J Surg 40:301-308
  24. Sakaguchi H, Seki S, Tsuji K, Teramoto K, Suzuki M, Kioka K, Isoda N, Ido K, Research JSfLT (2009) Endoscopic thermal ablation therapies for hepatocellular carcinoma: a multi‐center study. Hepatol Res 39:47-52
  25. Takahashi H, Kahramangil B, Kose E, Berber E (2018) A comparison of microwave thermosphere versus radiofrequency thermal ablation in the treatment of colorectal liver metastases. HPB (Oxford) 20:1157-1162
  26. Yang B, Li Y (2017) A comparative study of laparoscopic microwave ablation with laparoscopic radiofrequency ablation for colorectal liver metastasis. J BUON 22:667-672
  27. Simo KA, Sereika SE, Newton KN, Gerber DA (2011) Laparoscopic‐assisted microwave ablation for hepatocellular carcinoma: Safety and efficacy in comparison with radiofrequency ablation. J Surg Oncol 104:822-829
  28. Santambrogio R, Chiang J, Barabino M, Meloni FM, Bertolini E, Melchiorre F, Opocher E (2017) Comparison of laparoscopic microwave to radiofrequency ablation of small hepatocellular carcinoma (≤ 3 cm). Ann Surg Oncol 24:257-263
  29. Iida H, Aihara T, Ikuta S, Yamanaka N (2012) A comparative study of therapeutic effect between laparoscopic microwave coagulation and laparoscopic radiofrequency ablation. Hepatogastroenterology 60:662-665
  30. Potretzke TA, Ziemlewicz TJ, Hinshaw JL, Lubner MG, Wells SA, Brace CL, Agarwal P, Lee FT Jr (2016) Microwave versus radiofrequency ablation treatment for hepatocellular carcinoma: a comparison of efficacy at a single center. J Vasc Interv Radiol 27:631-638
  31. Xu Y, Shen Q, Wang N, Wu P-P, Huang B, Kuang M, Qian G-J (2017) Microwave ablation is as effective as radiofrequency ablation for very-early-stage hepatocellular carcinoma. Chin J Cancer 36:14
  32. Liu W, Zheng Y, He W,Zou R, Qiu J, Shen J, Yang Z, Zhang Y, Wang C, Wang Y, Zuo D, Li B, Yuan Y (2018) Microwave vs radiofrequency ablation for hepatocellular carcinoma within the Milan criteria: a propensity score analysis. Aliment Pharmacol Ther 48:671-681
  33. Glassberg MB, Ghosh S, Clymer JW, Qadeer RA, Ferko NC, Sadeghirad B, Wright GW, Amaral JF (2019) Microwave ablation compared with radiofrequency ablation for treatment of hepatocellular carcinoma and liver metastases: a systematic review and meta-analysis. Onco Targets Ther 12:6407-6438
  34. Facciorusso A, Di Maso M, Muscatiello N (2016) Microwave ablation versus radiofrequency ablation for the treatment of hepatocellular carcinoma: A systematic review and meta-analysis. Int J Hyperthermia 32:339-344
  35. Tan W, Deng Q, Lin S, Wang Y, Xu G (2019) Comparison of microwave ablation and radiofrequency ablation for hepatocellular carcinoma: a systematic review and meta-analysis. Int J Hyperthermia 36:263-271
233

Share this:

  • Twitter
  • Facebook
  • LinkedIn
  • Pinterest
  • WhatsApp
  • Reddit

Related

© 2023 Society of American Gastrointestinal and Endoscopic Surgeons. All Rights Reserved. Please do not post this document on your web site.

For more information please contact:

SOCIETY OF AMERICAN GASTROINTESTINAL ENDOSCOPIC SURGEONS (SAGES)
11300 West Olympic Blvd., Suite 600
Los Angeles, CA 90064
Tel:
(310) 437-0544
Fax:
(310) 437-0585
Email:
publications@sages.org

Guidelines for clinical practice are intended to indicate preferable approaches to medical problems as established by experts in the field. These recommendations will be based on existing data or a consensus of expert opinion when little or no data are available. Guidelines are applicable to all physicians who address the clinical problem(s) without regard to specialty training or interests, and are intended to indicate the preferable, but not necessarily the only acceptable approaches due to the complexity of the healthcare environment. Guidelines are intended to be flexible. Given the wide range of specifics in any health care problem, the surgeon must always choose the course best suited to the individual patient and the variables in existence at the moment of decision.

Guidelines are developed under the auspices of the Society of American Gastrointestinal and Endoscopic Surgeons and its various committees, and approved by the Board of Governors. Each clinical practice guideline has been systematically researched, reviewed and revised by the guidelines committee, and reviewed by an appropriate multidisciplinary team. The recommendations are therefore considered valid at the time of its production based on the data available. Each guideline is scheduled for periodic review to allow incorporation of pertinent new developments in medical research knowledge, and practice.

Hours & Info

11300 West Olympic Blvd, Suite 600
Los Angeles, CA 90064
1-310-437-0544
[email protected]
Monday - Friday
8am to 5pm Pacific Time

Find Us Around the Web!

  • Facebook
  • Twitter
  • YouTube

Important Links

SAGES 2023 Meeting Information

Healthy Sooner: Patient Information

SAGES Guidelines, Statements, & Standards of Practice

SAGES Manuals

 

  • taTME Study Info
  • Foundation
  • SAGES.TV
  • MyCME
  • Educational Activities

Copyright © 2023 Society of American Gastrointestinal and Endoscopic Surgeons