• Skip to main content
  • Skip to header right navigation
  • Skip to site footer

Log in
  • Search
    • Search All SAGES Content
    • Search SAGES Guidelines
    • Search the Video Library
    • Search the Image Library
    • Search the Abstracts Archive
www.sages.org

SAGES

Reimagining surgical care for a healthier world

  • Home
    • Search
    • SAGES Home
    • SAGES Foundation Home
  • About
    • Awards
    • Who Is SAGES?
    • Leadership
    • Our Mission
    • Advocacy
    • Committees
      • SAGES Board of Governors
      • Officers and Representatives of the Society
      • Committee Chairs and Co-Chairs
      • Committee Rosters
      • SAGES Past Presidents
  • Meetings
    • SAGES NBT Innovation Weekend
    • SAGES Annual Meeting
      • 2026 Scientific Session Call for Abstracts
      • 2026 Emerging Technology Call for Abstracts
    • CME Claim Form
    • SAGES Past, Present, Future, and Related Meeting Information
    • SAGES Related Meetings & Events Calendar
  • Join SAGES!
    • Membership Application
    • Membership Benefits
    • Membership Types
      • Requirements and Applications for Active Membership in SAGES
      • Requirements and Applications for Affiliate Membership in SAGES
      • Requirements and Applications for Associate Active Membership in SAGES
      • Requirements and Applications for Candidate Membership in SAGES
      • Requirements and Applications for International Membership in SAGES
      • Requirements for Medical Student Membership
    • Member Spotlight
    • Give the Gift of SAGES Membership
  • Patients
    • Join the SAGES Patient Partner Network (PPN)
    • Patient Information Brochures
    • Healthy Sooner – Patient Information for Minimally Invasive Surgery
    • Choosing Wisely – An Initiative of the ABIM Foundation
    • All in the Recovery: Colorectal Cancer Alliance
    • Find A SAGES Surgeon
  • Publications
    • Sustainability in Surgical Practice
    • SAGES Stories Podcast
    • Patient Information Brochures
    • Patient Information From SAGES
    • TAVAC – Technology and Value Assessments
    • Surgical Endoscopy and Other Journal Information
    • SAGES Manuals
    • MesSAGES – The SAGES Newsletter
    • COVID-19 Archive
    • Troubleshooting Guides
  • Education
    • Wellness Resources – You Are Not Alone
    • Avoid Opiates After Surgery
    • SAGES Subscription Catalog
    • SAGES TV: Home of SAGES Surgical Videos
    • The SAGES Safe Cholecystectomy Program
    • Masters Program
    • Resident and Fellow Opportunities
      • MIS Fellows Course
      • SAGES Robotics Residents and Fellows Courses
      • SAGES Free Resident Webinar Series
      • Fluorescence-Guided Surgery Course for Fellows
      • Fellows’ Career Development Course
    • SAGES S.M.A.R.T. Enhanced Recovery Program
    • SAGES @ Cine-Med Products
      • SAGES Top 21 Minimally Invasive Procedures Every Practicing Surgeon Should Know
      • SAGES Pearls Step-by-Step
      • SAGES Flexible Endoscopy 101
    • SAGES OR SAFETY Video Activity
  • Opportunities
    • Fellowship Recognition Opportunities
    • SAGES Advanced Flexible Endoscopy Area of Concentrated Training (ACT) SEAL
    • Multi-Society Foregut Fellowship Certification
    • Research Opportunities
    • FLS
    • FES
    • FUSE
    • Jobs Board
    • SAGES Go Global: Global Affairs and Humanitarian Efforts
  • OWLS/FLS
You are here: Home / Abstracts / Proficiency-Based Training for Robotic Surgery: Construct Validity and Workload for Nine Inanimate Exercises

Proficiency-Based Training for Robotic Surgery: Construct Validity and Workload for Nine Inanimate Exercises

Genevieve Dulan, MD, Robert V Rege, MD, Deborah C Hogg, BS, Kristine K Gilberg-Fisher, RN BSN, Nabeel A Arain, MD MBA, Seifu T Tesfay, RN MS, Daniel J Scott, MD. University of Texas, Southwestern

Introduction: We previously developed 9 inanimate training exercises as part of a comprehensive, proficiency-based robotic training curriculum that addressed 23 unique skills identified via task deconstruction of robotic operations. The purpose of this study was to evaluate construct validity and workload of the 9 exercises.

Methods: Expert robotic surgeons (n = 8, fellows and faculty) and novice trainees (n = 4, medical students) each performed 3-5 consecutive repetitions of the 9 standardized exercises. 5 used FLS models with or without modifications, including Peg Transfer, Clutch/Camera Peg Transfer, Pattern Cut, and Interrupted and Running Suture; 4 used other commercially available and custom made components, including Rubber Band Transfer, Stair Rubber Band Transfer, Clutch/Camera Navigation, and Running/Cutting Rubber Band. Each task was scored for time and accuracy using modified FLS metrics; task scores were normalized to a previously established proficiency level and a composite score equaled the sum of the 9 normalized task scores. Questionnaires were administered regarding prior experience. After each exercise, participants completed a validated NASA-TLX Workload Scale to rate the mental, physical, temporal, performance, effort and frustration levels of each task. Comparisons used Mann-Whitney tests; p<0.05 was considered significant.

Results: Experts had performed 151 (range 15-600) robotic operations; novices had observed ≤ 1 robotic operation. For all 9 tasks (Table) and the composite score, experts achieved significantly better performance than novices: 932 ± 67 vs. 618 ± 111 (p<0.001), respectively. No significant differences were detected between experts and novices for the 9 tasks and the overall workload (scale 1-10, 10 = high workload) ratings: 4.8 ± 2.1 vs. 5.3 ± 0.6 (n.s), respectively. Importantly, frustration ratings were relatively low for both groups (4.0 ± 0.7 vs. 3.8 ± 1.6, n.s.).

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9
Experts 97±5 104±7 94±9 100±5 106±5 104±13 110±9 101±31 134±20
Novice 80±16 94±9 66±19 71±16 88±7 89±11 66±24 30±36 26±31
p value 0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Conclusion: Using objective performance metrics, all 9 exercises demonstrated construct validity. Workload was similar between experts and novices and frustration was low for both groups. These data suggest that the 9 structured exercises are suitable for proficiency-based robotic training.


Session: SS16
Program Number: S090

121

Share this:

  • Click to share on X (Opens in new window) X
  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Pinterest (Opens in new window) Pinterest
  • Click to share on WhatsApp (Opens in new window) WhatsApp
  • Click to share on Reddit (Opens in new window) Reddit
  • Click to share on Pocket (Opens in new window) Pocket
  • Click to share on Mastodon (Opens in new window) Mastodon
  • Click to share on Threads (Opens in new window) Threads
  • Click to share on Bluesky (Opens in new window) Bluesky

Related


sages_adbutler_leaderboard

Hours & Info

11300 West Olympic Blvd, Suite 600
Los Angeles, CA 90064

1-310-437-0544

[email protected]

Monday – Friday
8am to 5pm Pacific Time

Find Us Around the Web!

  • Bluesky
  • X
  • Instagram
  • Facebook
  • YouTube

Copyright © 2025 · SAGES · All Rights Reserved

Important Links

Healthy Sooner: Patient Information

SAGES Guidelines, Statements, & Standards of Practice

SAGES Manuals