• Skip to main content
  • Skip to header right navigation
  • Skip to site footer

Log in
  • Search
    • Search All SAGES Content
    • Search SAGES Guidelines
    • Search the Video Library
    • Search the Image Library
    • Search the Abstracts Archive
www.sages.org

SAGES

Reimagining surgical care for a healthier world

  • Home
    • Search
    • SAGES Home
    • SAGES Foundation Home
  • About
    • Awards
    • Who Is SAGES?
    • Leadership
    • Our Mission
    • Advocacy
    • Committees
      • SAGES Board of Governors
      • Officers and Representatives of the Society
      • Committee Chairs and Co-Chairs
      • Committee Rosters
      • SAGES Past Presidents
  • Meetings
    • SAGES NBT Innovation Weekend
    • SAGES Annual Meeting
      • 2026 Scientific Session Call for Abstracts
      • 2026 Emerging Technology Call for Abstracts
    • CME Claim Form
    • SAGES Past, Present, Future, and Related Meeting Information
    • SAGES Related Meetings & Events Calendar
  • Join SAGES!
    • Membership Application
    • Membership Benefits
    • Membership Types
      • Requirements and Applications for Active Membership in SAGES
      • Requirements and Applications for Affiliate Membership in SAGES
      • Requirements and Applications for Associate Active Membership in SAGES
      • Requirements and Applications for Candidate Membership in SAGES
      • Requirements and Applications for International Membership in SAGES
      • Requirements for Medical Student Membership
    • Member Spotlight
    • Give the Gift of SAGES Membership
  • Patients
    • Join the SAGES Patient Partner Network (PPN)
    • Patient Information Brochures
    • Healthy Sooner – Patient Information for Minimally Invasive Surgery
    • Choosing Wisely – An Initiative of the ABIM Foundation
    • All in the Recovery: Colorectal Cancer Alliance
    • Find A SAGES Surgeon
  • Publications
    • Sustainability in Surgical Practice
    • SAGES Stories Podcast
    • Patient Information Brochures
    • Patient Information From SAGES
    • TAVAC – Technology and Value Assessments
    • Surgical Endoscopy and Other Journal Information
    • SAGES Manuals
    • MesSAGES – The SAGES Newsletter
    • COVID-19 Archive
    • Troubleshooting Guides
  • Education
    • Wellness Resources – You Are Not Alone
    • Avoid Opiates After Surgery
    • SAGES Subscription Catalog
    • SAGES TV: Home of SAGES Surgical Videos
    • The SAGES Safe Cholecystectomy Program
    • Masters Program
    • Resident and Fellow Opportunities
      • MIS Fellows Course
      • SAGES Robotics Residents and Fellows Courses
      • SAGES Free Resident Webinar Series
      • Fluorescence-Guided Surgery Course for Fellows
      • Fellows’ Career Development Course
    • SAGES S.M.A.R.T. Enhanced Recovery Program
    • SAGES @ Cine-Med Products
      • SAGES Top 21 Minimally Invasive Procedures Every Practicing Surgeon Should Know
      • SAGES Pearls Step-by-Step
      • SAGES Flexible Endoscopy 101
    • SAGES OR SAFETY Video Activity
  • Opportunities
    • Fellowship Recognition Opportunities
    • SAGES Advanced Flexible Endoscopy Area of Concentrated Training (ACT) SEAL
    • Multi-Society Foregut Fellowship Certification
    • Research Opportunities
    • FLS
    • FES
    • FUSE
    • Jobs Board
    • SAGES Go Global: Global Affairs and Humanitarian Efforts
  • OWLS/FLS
You are here: Home / Abstracts / Towards the future of endoluminal surgery – Pre-clinical experience of using the ESP.

Towards the future of endoluminal surgery – Pre-clinical experience of using the ESP.

S K Sharma1, A Datta1, A Nguyen1, C D Dillon1, L Lefebvre1, G Silberhumer2, J F Cornhill1, J W Milsom1. 1Minimally Invasive New Technologies, Weill Cornell Medical College and N.Y Presbyterian Hospital, 2Medical University Vienna, Department of Surgery, Vienna, Austria

Objective:

Despite the widespread use of colonoscopy in the detection and prevention of colorectal cancer, technical challenges persist including lack of stability relative to the intestinal wall and poor intraluminal visibility. Additionally, broader adoption of intestinal endoluminal surgery (e.g. Endoscopic Mucosal Resection, Endoscopic Submucosal Dissection and Combined Endo-laparoscopic Surgery) for diseases such as large benign polyps or early colorectal cancer remains delayed, in part due to these challenges, despite clear advantages over surgical segmental resection.

We present an innovative technology that addresses some of the major challenges of conventional colonoscopy and facilitates the advancement of surgical procedures into the endoluminal domain. We propose the design and use of a novel device, capable of being applied to a range of commercially available colonoscopes. Our hypothesis is that ESP significantly improves stability and visualization during colonoscopy.

Figure 1:

image

Description:

The disposable ESP integrates with existing colonoscopes, (figure 1) of varying diameters with no loss of function. ESP incorporates a double balloon system; the foreballoon may be extended beyond the colonoscope tip and inflated, it can then be deflated and redocked onto the colonoscope tip repeatedly, allowing use of the ESP throughout the colon. The aft balloon is positioned behind the articulating colonoscope segment providing stability. The ESP does not occupy the working channel, allowing therapeutic functionality to be maintained. It is intended that the ESP device be applied to all complex endoluminal procedures.

Preliminary results:

Our team designed, built and evaluated the prototype ESP in a bench-top setting on the Kyoto-Kagaku colonoscopic trainer. The silicone colon was marked with 1cm points allowing for calculation of surface area (see figure 2). Overall, there was significant improvement in colonoscope (Olympus PCF-180AL) stability (p<0.0001) and visualization (p<0.05) using ESP (see table 1). The foreballoon was deployed at multiple points along the ‘colon’ and successfully redocked in 100% of attempts during the evaluation. Colonoscope functionality was preserved in its entirety whilst using ESP.

Figure 2:

image

Table 1:

Variable Colonoscope

Colonoscope + ESP

(* = p< 0.05)

Intubated Caecum (%) 100 100
Time to reach caecum (sec) 38.2 47.6*
Colonoscope Migration following 5cm longitudinal traction (cm) 60 0*
Surface Area Visualized (cm2)

34.6 (straight)

39 (flexure)

50 (both)*
Time for maximum visualization (sec)

35 (straight)

57 (flexure)

19.6 (straight)*

35 (flexure)*

Damage to colon No No

Conclusions:

To the best of our knowledge, the ESP demonstrates the first platform capable of repetetive endoluminal balloon deployment whilst preserving colonoscope functionality. Preliminary results indicate significant enhancements of visualization and stability. Further in-vivo feasibility testing is needed to quantify the therapeutic benefits of ESP. Whilst additional development and testing is necessary, the ESP shows promise in expanding both the current and future surgical applications of colonoscopy.

340

Share this:

  • Click to share on X (Opens in new window) X
  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Pinterest (Opens in new window) Pinterest
  • Click to share on WhatsApp (Opens in new window) WhatsApp
  • Click to share on Reddit (Opens in new window) Reddit
  • Click to share on Pocket (Opens in new window) Pocket
  • Click to share on Mastodon (Opens in new window) Mastodon
  • Click to share on Threads (Opens in new window) Threads
  • Click to share on Bluesky (Opens in new window) Bluesky

Related


sages_adbutler_leaderboard

Hours & Info

11300 West Olympic Blvd, Suite 600
Los Angeles, CA 90064

1-310-437-0544

[email protected]

Monday – Friday
8am to 5pm Pacific Time

Find Us Around the Web!

  • Bluesky
  • X
  • Instagram
  • Facebook
  • YouTube

Copyright © 2025 · SAGES · All Rights Reserved

Important Links

Healthy Sooner: Patient Information

SAGES Guidelines, Statements, & Standards of Practice

SAGES Manuals