• Skip to main content
  • Skip to header right navigation
  • Skip to site footer

Log in
  • Search
    • Search All SAGES Content
    • Search SAGES Guidelines
    • Search the Video Library
    • Search the Image Library
    • Search the Abstracts Archive
www.sages.org

SAGES

Reimagining surgical care for a healthier world

  • Home
    • Search
    • SAGES Home
    • SAGES Foundation Home
  • About
    • Awards
    • Who Is SAGES?
    • Leadership
    • Our Mission
    • Advocacy
    • Committees
      • SAGES Board of Governors
      • Officers and Representatives of the Society
      • Committee Chairs and Co-Chairs
      • Committee Rosters
      • SAGES Past Presidents
  • Meetings
    • SAGES NBT Innovation Weekend
    • SAGES Annual Meeting
      • 2026 Scientific Session Call for Abstracts
      • 2026 Emerging Technology Call for Abstracts
    • CME Claim Form
    • SAGES Past, Present, Future, and Related Meeting Information
    • SAGES Related Meetings & Events Calendar
  • Join SAGES!
    • Membership Application
    • Membership Benefits
    • Membership Types
      • Requirements and Applications for Active Membership in SAGES
      • Requirements and Applications for Affiliate Membership in SAGES
      • Requirements and Applications for Associate Active Membership in SAGES
      • Requirements and Applications for Candidate Membership in SAGES
      • Requirements and Applications for International Membership in SAGES
      • Requirements for Medical Student Membership
    • Member Spotlight
    • Give the Gift of SAGES Membership
  • Patients
    • Join the SAGES Patient Partner Network (PPN)
    • Patient Information Brochures
    • Healthy Sooner – Patient Information for Minimally Invasive Surgery
    • Choosing Wisely – An Initiative of the ABIM Foundation
    • All in the Recovery: Colorectal Cancer Alliance
    • Find A SAGES Surgeon
  • Publications
    • Sustainability in Surgical Practice
    • SAGES Stories Podcast
    • SAGES Clinical / Practice / Training Guidelines, Statements, and Standards of Practice
    • Patient Information Brochures
    • Patient Information From SAGES
    • TAVAC – Technology and Value Assessments
    • Surgical Endoscopy and Other Journal Information
    • SAGES Manuals
    • MesSAGES – The SAGES Newsletter
    • COVID-19 Archive
    • Troubleshooting Guides
  • Education
    • Wellness Resources – You Are Not Alone
    • Avoid Opiates After Surgery
    • SAGES Subscription Catalog
    • SAGES TV: Home of SAGES Surgical Videos
    • The SAGES Safe Cholecystectomy Program
    • Masters Program
    • Resident and Fellow Opportunities
      • SAGES Free Resident Webinar Series
      • Fluorescence-Guided Surgery Course for Fellows
      • Fellows’ Career Development Course
      • SAGES Robotics Residents and Fellows Courses
      • MIS Fellows Course
    • SAGES S.M.A.R.T. Enhanced Recovery Program
    • SAGES @ Cine-Med Products
      • SAGES Top 21 Minimally Invasive Procedures Every Practicing Surgeon Should Know
      • SAGES Pearls Step-by-Step
      • SAGES Flexible Endoscopy 101
    • SAGES OR SAFETY Video Activity
  • Opportunities
    • Fellowship Recognition Opportunities
    • SAGES Advanced Flexible Endoscopy Area of Concentrated Training (ACT) SEAL
    • Multi-Society Foregut Fellowship Certification
    • Research Opportunities
    • FLS
    • FES
    • FUSE
    • Jobs Board
    • SAGES Go Global: Global Affairs and Humanitarian Efforts
  • OWLS/FLS
You are here: Home / Abstracts / The Development of a Virtual Simulator for Colorectal Endoscopic Submucosal Dissection (ESD)

The Development of a Virtual Simulator for Colorectal Endoscopic Submucosal Dissection (ESD)

Zhaohui Xia, PhD1, Tansel Halic2, Sangrock Lee1, Berk Cetinsaya3, Mark A. Gromski4, Doga Demirel3, Coskun Bayrak3, Cullen Jackson5, Sudeep Hegde5, Jonah Cohen5, Mandeep Sawhney5, Daniel Jones5, Suvranu De1. 1Rensselaer Polytechnic Institute, 2University of Central Arkansas, 3University of Arkansas at Little Rock, 4Indiana University School of Medicine, 5Harvard Medical School

INTRODUCTION: Colorectal cancer is one of the most common cancers in the United States. Endoscopic Submucosal Dissection (ESD) is an emerging minimally invasive technique that allows complete en-bloc resection and a much lower recurrence rate at long-term follow-ups. However, performing colorectal ESD is technically demanding since the colorectal wall is thin and constantly moving, and potentially higher rates of complications (e.g., bleeding and perforations). Hence, an adequate training for colorectal ESD is needed to acquire basic proficiency with minimum complications.

OBJECTIVES: A virtual reality (VR)-based simulator with visual and haptic feedback for training in colorectal ESD is being developed, which the aim to allow trainees to attain competence in a controlled environment with no risk to patients. In this work, a newly developed application of the virtual simulator that promotes the endoscopists to perform and assess technical skills in ESD is developed. Training tasks are built based on physics-based computational models of human anatomy with tumors.

METHODS: The main modules of the VR-based simulator for colorectal ESD involve: (1) rendering; (2) haptic interface; (3) physics-based simulation; and (4) performance recording and assessment metrics. The rendering engine allows surgical tasks to be performed in the three-dimensional virtual environment. Haptic feedback mechanisms allow users to physically feel the interaction forces. Physics-based simulation technologies are employed to enable the complicated simulation for performing virtual surgical tool-tissue interactions. The simulator can also collect learners’ performance data to offer feedback based on the built-in metrics.

RESULTS: Four training tasks involving marking, injection solution, circumferential cutting, and submucosal dissection are designed to practice skills with different surgical tools. The marking task aims to identify the lesion. The injection solution task minimizes the risk of bleeding and perforation to protect the muscularis. In the circumferential cutting task, the objective is initial incision of the lesion with the surgical tools. The objective of the dissection task is to remove the tumor from the connective tissue of the submucosa under the lesion.

CONCLUSIONS: The VR-based simulator enables realistic ESD tasks to provide a possibility for developing, validating and objectively evaluating the performance metrics in colorectal ESD training, and offers an opportunity to rise up the learning curve before application to patients. 


Presented at the SAGES 2017 Annual Meeting in Houston, TX.

Abstract ID: 87474

Program Number: P318

Presentation Session: iPoster Session (Non CME)

Presentation Type: Poster

106

Share this:

  • Click to share on X (Opens in new window) X
  • Click to share on X (Opens in new window) X
  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Pinterest (Opens in new window) Pinterest
  • Click to share on WhatsApp (Opens in new window) WhatsApp
  • Click to share on Reddit (Opens in new window) Reddit
  • Click to share on Pocket (Opens in new window) Pocket
  • Click to share on Mastodon (Opens in new window) Mastodon

Related



Hours & Info

11300 West Olympic Blvd, Suite 600
Los Angeles, CA 90064

1-310-437-0544

[email protected]

Monday – Friday
8am to 5pm Pacific Time

Find Us Around the Web!

  • Bluesky
  • X
  • Instagram
  • Facebook
  • YouTube

Copyright © 2025 · SAGES · All Rights Reserved

Important Links

Healthy Sooner: Patient Information

SAGES Guidelines, Statements, & Standards of Practice

SAGES Manuals