• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

SAGES

Reimagining surgical care for a healthier world

  • Home
    • COVID-19 Annoucements
    • Search
    • SAGES Home
    • SAGES Foundation Home
  • About
    • Who is SAGES?
    • SAGES Mission Statement
    • Advocacy
    • Strategic Plan, 2020-2023
    • Committees
      • Request to Join a SAGES Committee
      • SAGES Board of Governors
      • Officers and Representatives of the Society
      • Committee Chairs and Co-Chairs
      • Full Committee Rosters
      • SAGES Past Presidents
    • Donate to the SAGES Foundation
    • Awards
      • George Berci Award
      • Pioneer in Surgical Endoscopy
      • Excellence In Clinical Care
      • International Ambassador
      • IRCAD Visiting Fellowship
      • Social Justice and Health Equity
      • Excellence in Community Surgery
      • Distinguished Service
      • Early Career Researcher
      • Researcher in Training
      • Jeff Ponsky Master Educator
      • Excellence in Medical Leadership
      • Barbara Berci Memorial Award
      • Brandeis Scholarship
      • Advocacy Summit
      • RAFT Annual Meeting Abstract Contest and Awards
  • Meetings
    • NBT Innovation Weekend
    • SAGES Annual Meeting
      • 2023 Scientific Session Call For Abstracts
      • 2023 Emerging Technology Call For Abstracts
    • CME Claim Form
    • Industry
      • Advertising Opportunities
      • Exhibit Opportunities
      • Sponsorship Opportunities
    • Future Meetings
    • Past Meetings
      • SAGES 2022
      • SAGES 2021
    • Related Meetings Calendar
  • Join SAGES!
    • Membership Benefits
    • Membership Applications
      • Active Membership
      • Affiliate Membership
      • Associate Active Membership
      • Candidate Membership
      • International Membership
      • Medical Student Membership
    • Member News
      • Member Spotlight
      • Give the Gift of SAGES Membership
  • Patients
    • Healthy Sooner – Patient Information for Minimally Invasive Surgery
    • Patient Information Brochures
    • Choosing Wisely – An Initiative of the ABIM Foundation
    • All in the Recovery: Colorectal Cancer Alliance
    • Find a SAGES Member
  • Publications
    • SAGES Stories Podcast
    • SAGES Clinical / Practice / Training Guidelines, Statements, and Standards of Practice
    • Patient Information Brochures
    • TAVAC – Technology and Value Assessments
    • Surgical Endoscopy and Other Journal Information
    • SAGES Manuals
    • SCOPE – The SAGES Newsletter
    • COVID-19 Annoucements
    • Troubleshooting Guides
  • Education
    • OpiVoid.org
    • SAGES.TV Video Library
    • Safe Cholecystectomy Program
      • Safe Cholecystectomy Didactic Modules
    • Masters Program
      • SAGES Facebook Program Collaboratives
      • Acute Care Surgery
      • Bariatric
      • Biliary
      • Colorectal
      • Flexible Endoscopy (upper or lower)
      • Foregut
      • Hernia
      • Robotics
    • Educational Opportunities
    • HPB/Solid Organ Program
    • Courses for Residents
      • Advanced Courses
      • Basic Courses
    • Video Based Assessments (VBA)
    • Robotics Fellows Course
    • MIS Fellows Course
    • Facebook Livestreams
    • Free Webinars For Residents
    • SMART Enhanced Recovery Program
    • SAGES OR SAFETY Video
    • SAGES at Cine-Med
      • SAGES Top 21 MIS Procedures
      • SAGES Pearls
      • SAGES Flexible Endoscopy 101
      • SAGES Tips & Tricks of the Top 21
  • Opportunities
    • NEW-Area of Concentrated Training Seal (ACT)-Advanced Flexible Endoscopy-Coming Soon!
    • SAGES Fellowship Certification for Advanced GI MIS and Comprehensive Flexible Endoscopy
    • Multi-Society Foregut Fellowship Certification
    • SAGES Research Opportunities
    • Fundamentals of Laparoscopic Surgery
    • Fundamentals of Endoscopic Surgery
    • Fundamental Use of Surgical Energy
    • Job Board
    • SAGES Go Global: Global Affairs and Humanitarian Efforts
  • Search
    • Search All SAGES Content
    • Search SAGES Guidelines
    • Search the Video Library
    • Search the Image Library
    • Search the Abstracts Archive
  • Store
    • “Unofficial” Logo Products
  • Log In

Effects of Reactive Oxygen Species on the Physical Properties of Polypropylene Surgical Mesh at Various Concentrations: a Model for Inflammatory Reaction as a Cause for Mesh Embrittlement and Failure

Jean Kurtz, BS1, Ben Rael2, Jesus Lerma2, Tariq Khraishi, PhD2, Timothy Perez, MD3, Edward Auyang, MD3. 1University of New Mexico School of Medicine, 2University of New Mexico Department of Mechanical Engineering, 3University of New Mexico Department of General Surgery

Hypothesis:

Surgical meshes made from modified polypropylene (PP) are used in a variety of procedures. Polypropylene mesh undergoes structural changes in the human body that alter its physical properties and contribute to post-operative complications. Oxidative degradation by reactive oxygen species (ROS) from the human inflammatory process may initiate cross-linking, depolymerization, and formation of a more quasi-crystallline quality. Stress cracking and fiber changes cause PP meshes to lose structural integrity and embrittle. Measurement of embrittlement in vivo is extremely difficult. In order to investigate the relationship between ROS and embrittlement, a basic laboratory environment was constructed in which PP mesh samples were exposed to various concentrations of ROS. Human inflammatory factors vary from individual to individual, and mesh failure has been associated with health, age, and disease state. For this reason, concentration of ROS was expected to be positively correlated to measured effect, and changes were anticipated at low, physiological concentrations.

Methods:

Medical-grade surgical mesh, Ethicon Ultrapro©, samples were prepared in dog-bone shapes and soaked in hydrogen peroxide solutions with concentration of 1M, 0.1 M, or 1 mM for 6 months. Tensile strength and elongation to failure were determined for 5-7 samples at each concentration using load displacement tensile testing (LDTT) and were compared to samples that remained unexposed to hydrogen peroxide (0 M). Observational alterations in fiber structure were explored using scanning electron microscopy (SEM).

Results:

LDTT yielded results for tensile strength and elongation to failure that were determined with 95% confidence interval (CI). For samples exposed to 0 M, tensile strength was 28.0 ± 2.4 lbs and elongation to failure was 2.0 ± 0.3 in. For samples exposed to 1 mM, tensile strength was 19.2 ± 1.1 lbs and the elongation to failure was 2.0 ± 0.1 in. For samples exposed to 0.1 M, tensile strength was 19.3 ± 1.6 lbs and elongation to failure was 1.9 ± 0.1 in. For samples exposed to 1 M, tensile strength was 20.7 ± 1.2 lbs and elongation to failure was 0.47 ± 0.02 in.

image

imageimage

imageimage

SEM images of mesh exposed to ROS had fracture surfaces that appear similar to brittle materials. Pulled ends of 0 M mesh demonstrate blunted surfaces typical of non-rigid materials whereas pulled ends of 1 M mesh demonstrate a rough fracture surface typical of rigid materials.

imageimage

Conclusion:

The results demonstrated that small concentrations of ROS (1 mM) can decrease tensile strength by 31%. Concentrations on this order have been known to occur physiologically in humans. Results for samples exposed in 1 mM and 0.1 M solutions behaved similarly and yielded similar tensile strength at failure suggesting that the concentration of ROS does not correlate in a linear fashion to changes in physical property. Exposure to ROS and affect on tensile strength is not well correlated to concentration of the ROS. The samples exposed to 1 M environments were particularly rigid as demonstrated by LDTT and SEM imaging.

122

Share this:

  • Twitter
  • Facebook
  • LinkedIn
  • Pinterest
  • WhatsApp
  • Reddit

Related

« Return to SAGES 2015 abstract archive

Our Mission

Innovate, educate and collaborate to improve patient care.

Recently, on SAGES…

Critical View of Safety (CVS) Challenge QR Code

The SAGES Critical View of Safety Challenge – Donate Your Lap Chole Videos!

The Society of American Gastrointestinal and Endoscopic Surgeons is hosting the first Artificial Intelligence Data Challenge conducted by surgeons. The aim of this challenge is to generate a large and diverse dataset of laparoscopic cholecystectomy videos, annotated with respect to the subcomponents of the Critical View of Safety (CVS). Computer scientists from all over the […]

Respuesta de SAGES al Estudio NordICC sobre el beneficio de las colonoscopias de detección

SAGES desea aclarar los resultados del estudio NordICC y colocarlos en contexto de los esfuerzos de varias agencias nacionales para reducir el riesgo de cáncer colorrectal – la segunda causa de muerte por cáncer más frecuente en los Estados Unidos-, mediante la promoción de la detección y tratamiento oportuno de las lesiones.

SAGES Response to NordICC Study Regarding Benefit of Screening Colonoscopies

The NordICC Study recently published in The New England Journal of Medicine and widely reported on by media outlets has raised questions regarding the benefit of screening colonoscopy in lowering the risk of colorectal cancer and cancer-related deaths among otherwise healthy and symptom-free men and women aged 55 to 64. Provocative headlines and commentaries have […]

Contact SAGES

Society of American Gastrointestinal and Endoscopic Surgeons
11300 W. Olympic Blvd Suite 600
Los Angeles, CA 90064 USA
webmaster@sages.org
Tel: (310) 437-0544

Find Us Around the Web!

  • Facebook
  • Twitter
  • YouTube

Important Links

SAGES 2023 Meeting Information

Healthy Sooner: Patient Information

SAGES Guidelines, Statements, & Standards of Practice

SAGES Manuals

 

  • taTME Study Info
  • Foundation
  • SAGES.TV
  • MyCME
  • Educational Activities

Copyright © 2023 Society of American Gastrointestinal and Endoscopic Surgeons